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SUMMARY

An examination and correlation of available data has shown that two

different methods must be used to estimate the jet induced lift on Fan

and Jet V/STOL aircraft in hovering flight. The Basic Method developed in

this study is used for configurations with widely spaced jets, and the

h' Method is used for configurations with closely spaced jets. The methods

account for the effects of jet arrangement, configuration planform, wing

height, body contour and Lift Improvement Devices (LIDs) but are limited

to configurations with essentially vertical, circular jets of equal size

and thrust. Suggestions for further work to evaluate and refine the

methods are included.

1
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INTRODUCTION

In hovering flight forces are induced on fan and jet powered V/STOL

aircraft by the entrainment action of the exiting jets. Out of ground

effect a small download is produced by the suction pressures induced on the

lower surface of the aircraft by the downward directed jet streams. In

ground effect the jets impinge on, and spread across the ground in a wall

jet under the aircraft greatly increasing the entrainment surface area and

the resulting suckdown. However, with two or more jets an upflow is created

where the wall jets, flowing outward from their respective impingement points,

meet. This upflow or "fountain" induces positive pressures on the underside

of the aircraft which act to reduce the lift loss or in some cases produce

a net positive lift.

The generally accepted method for estimating the ground induced suck-

down of a single jet configuration was developed by Wyatt, Ref. 1. His

method, with a small modification to account for nozzle pressure ratio

effects, was used as the starting point in an attempt, reported in ref. 2,

to develop an empirical method for predicting the ground effects of multiple

jet configurations. An "air cushion" analogy used in that method to

account for the fountain effects has been found to have limited applicability,

particularly for configurations with widely spaced jets.

Mrp recently Yen, ref. 3, developed relatively simple analytical

expressions for the vertical momentum in the fountain. Yen's work has

been used in the present study as the starting point for estimating the

fountain forces. However, it was found that the method .based on this

approach was only applicable to widely spaced jets. A second method,

similar to that of ref. 2, has been developed for closely spaced jet

configurations.

The present methods are intended for use only in preliminary design

work and to give a general indication of the effects of the primary con-

figuration variables. The induced effects are a complex function of many

configuration variables and the development of a V/STOL aircraft will

require careful experimental investigations to accurately determine the

induced forces.

2
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DEVELOPMENT OF METHODS

The methods developed in this study assume that the total induced

lift on a fan or jet V/STOL aircraft in hovering flight can be expressed

as:

O AAL S  ALF ALL
T- T+ T T T

where:

T is the lift loss induced out of ground effect. The methods for

estimating this term were reviewed and presented in reference 2. For the

present methods:

AL. [[tipn 64  17d1.58
TO= -.ooo253 JS d (2)

ALS  is the additional lift loss experienced in ground effect. The

T
basic method for estimating this term for single jet configurations was
developed by Wyatt (ref. 1) and modified slightly to account for the

effects of pressure ratio in reference 2. For the present methods the

ground induced suckdown for multiple jets is calculated by multiplying

Wyatt's expression for single jet suckdown by the factor KS

AL5 Ks(.)[42..j[ - .24 -L 1)

T S- 1.0

where KS = 1.0 for a single jet configuration. A method for estimating

KS  for multiple jet configurations has been developed in the present

study and is presented in later sections.
ALF AA and I are terms for the positive lift due to fountain effects

and Lift Improvement Devices (LIDs) respectively. Methods for estimating

these effects have been developed in the present study and are presented

in later sections.

I3
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The principle geometric parameters used in the methods developed

here are defined in figure 1. The definition of D and its value for

several regular planforms are presented in figure 2.

Basic Method

Basis of Method:

The flow from the jets of a V/STOL aircraft hovering in ground effect

impinge on the ground and flow radially outward in a wall jet from the

point of impingement. With multiple jets an upflow is created where these

wall jets meet. With two jets of equal size and thrust this upflow rises

vertically on the plane of symmetry between the jets and is a relatively

thin fan-shaped sheet as depicted in figure 3. A plate or airplane con-

figuration interrupting this upflow will experience a lift force. Yen,

in reference 3, developed an expression for this force which can be written

as:

AL A  XA

T = A e +-jh) (y2 + (e + h)2)

where the constant K A and the exponent A depend on the configuration

geometry and the jet decay and entrainment rates. Methods for estimating

both K A and XA will be developed empirically in later sections.

With 3 or more vertical jets an essentially vertical "fountain core"

is created at the centroid of the jet pattern where the inward flowing

wall jets meet (fig. 4). Also between each pair of jets there is a

vertical sheet or "fountain arm" similar to that created in the 2 jet case.

Yen's expression for the lift force due to the fountain core can be written

as:

ALC  C

where the constant KC  and the exponent AC depend on the configuration

geometry and on the jet decay and entrainment rates and are determined

empirically in later sections. The angle e is defined as half the

9
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- Virtual origin

Figure 3.- "Fountain" flow generated by a two jet configuration.
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Fountain core

Fountain arm

View A-A

A

A A_ +

A

Figure 4.- "Fountain core and arms" generated
by a configuration with 3 or more jets.

11

!4



NADC-80246-60

included angle between adjacent jets (see fig. ib). Note that for the
AL

two jet cases 8 equals 90 and the core lift - is zero.
ALF

For a two jet configuration the fountain lift tern, -F, in
tALF .AL A

equation (1) is given by equation (4) above A T T. For three

or more jets the contributions of both the core and fountain arms must

be included ( = + ). The contribution of the fountain arms,
ALA

T , can be estimated by a modification of equation (4) which will be

developed in later sections.

Unfortunately it is not possible to determine KAs KC, XA and C

directly from the experimental data because, as pointed out by Yen, the

above expressions represent only the upward momentum and do not include

the additional induced suckdown. As pointed out by Karemaa (ref. 4), the

fountain flows that produce the upward momentum also act to increase the

suckdown above that which would be expected from an equivalent single jet.

The net lift gain or loss measured experimentally is the difference

between the induced suckdown and the fountain lift experienced by the

plate or airplane configuration. A method for estimating the suckdo.n

must also be developed so that the difference between the estimated suckdown

and fountain lift can be compared with the experimental data.

Multiple Jet Suckdown and Fountain Lift (2 Jet Case):

Estimating the multi-jet suckdown requires knowledge of the areas

and strengths of the entrainment surfaces. For the single jet case the

entrainment surface is the area projection of the plate or aircraft

configuration planform on the ground surface and is defined by Wyatt's
"mean angular diameter" D (fig. 2).

For the multiple jet case, Kotansky, et al. (ref. 5) have pointed

out that additional entrainment surfaces exist as depicted in figure 5.

For 2 jets the flow in the wall jets meet on a line between the jets and

is projected upward in the fountain. Both sides of this upward flowing

sheet of air can entrain air. Also that part of the flow that impinges

on the plate of lower surface of the aircraft is again redirected and

flows outward along the lower surface. This is also an entraining

12
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Grounud Model
Groundt lower
surface surface

Unfolded entrainment surface
(left side)

I

View C-C

ie Entrainment
surfaces

B

KB View B-B

View A-A

Figure 5.- Assumed fountain flow on model lower surface,
arrows indicate flow direction, not vector magnitude.
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surface and is equal in area to that on the ground. It is not as effec-

tive in entraining air and lowering the pressure between the plate and

the ground as the flow on the ground surface, however, because of the

energy loss that has occurred due to jet spreading and decay.

The blockage created by the fountain itself also tends to increase

the suckdown. A single jet configuration entrains air from all sides.

With two jets part of the path by which air flows in to satisfy the

entrainment action of the wall jet on the ground is blocked by the fountain.

This blockage of the inflow path acts to increase the suction pressures and

the ground induced suckdown.

The first attempt to quantify the increased suckdown with two jet

configurations was to unfold the entrainment surface as shown at the

top of figure 5 and calculate a new D for each half of the configuration.

The reduced entrainment effectiveness of the fountain and of the flow on

the bottom of the plate was approximated by placing the origin for the

calculation of D at the impingement point on the ground part of the

unfolded surface. These values of D (which increase with height), were

used in Wyatt's expression to calculate the multijet suckdown,

the fountain lift from the experimental data using equation (1):

exp exp m

When the data thus obtained are plotted, as shown by the 3 examples
presented in figure 6, a value for the exponent XA of about 2, which

is reasonable, but a little higher than Yen (ref. 3) expected, is

obtained for the middle range of heights. At very low heights (high

values of ( ), however, the data indicate a very rapid increase
AL A e +hiLA

in -T-. Either there is another mechanism producing a rapid increase

in the fountain force or the download is being over-estimated at these

heights.

The most likely explanation is that the download is over-estimated

at the lower heights by the above approach. Karemaa, et. al. in ref. 4

14
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.08

.06
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.1 .2 .3 .4 .6 .8 1.0
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Figure 6.- Preliminary evaluation of XA for three sample sets of data.
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have shown that the fountain loses strength as the ground is approached

because it is being entrained by the wall jet on the ground surface thus

partially satisfying the wall jets entrainment appetite and reducing the

suction pressures being created.

An iterative approach was used in arriving at the expressions for

the Basic Method as derived in this study. First the values of XA and

KA  for the middle range of heights (as in examples shown in figure 6)
ALA

were derived from the data to calculate interim values of --. These

values of fountain lift were used to extract the "experimental" multijet
6LS L AL. ALA

download from the data: T)mT -T and to calculate
exp

the ratio of the multijet download to that for an equivalent single jet,

m

KS  AL /A )S from the data. The resulting values of KS are presented in
( T

figure 7. Although there is considerable scatter, the data for most

configurations, approach a variation given by: KS = 4.5 [ ....

at the higher heights. The reduction in KS at the lower heights was

found to be a function of the configuration geometry (2-, width/lengthd
e

ratio W/L, and the ratio of actual to circumscribing rectangle area, S/WL).

S = 4.5 h/de -1/4 
"

where (6)

w= -1.7 
"WS).36]1 38

The fountain lift was finally derived from the data using the expres-

sion for multijet download derived above. The resulting data, presented

in figure 8, indicates that a value of the exponent of XA - 2.0 provides

a reasonable fit with most of the data. The constant K A was found to beY

a function of the ratio of configuration width to the jet spacing I, and
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Figure 8.- Fountain lift derived from Experimental data,
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so
of the ratio of actual to potential area between the jets .r (see

fig. la) as shown in figure 9 and is given by:

IY'8 35

The expression for the fountain lift contribution for 2 jet configurations

in the Basic Method can then be written as:

ALA ( , ).835 (e)20
y2 + (e + h) 2

The net induced lift calculated by the Basic Method for 2 jet

configurations (equations 1, 2, 3, 6 and 7) is compared with experimental

data for 12 configurations in figure 19. (Configuration 12 is the only

configuration not used in the development of the method.) In general the

agreement is good. However the h' method, to be presented later, shows

better agreement for the configurations with the smaller jet spacings,

for which it was developed.

Fountain Lift (3 or More Jets):

With 3 or more jets a "fountain core" is generated at the centroid

of the jet pattern and "fountain arms" radiate from the core betweenALF
each pair of jets (fig. 4). The fountain lift -- for these

configurations must account for the contributions of both the core and the

arms and can be expressed as:

LF ALA ALC
T T T

Before developing expressions for the core and arm contributions

to the fountain lift it is necessary to determine the suckdown (-Ta
increment with 3 or more jets. There are compensating factors at work.

For a vanishingly small core the induced suckdown term would be expected

to be increased, relative to that for the 2 jet case, because of the

increased entrainment area provided by the multiple fountain arms. (The

2 jet case can be thought of as having 2 equal and opposite arms.)

20
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However, the core has been found (ref. 4) to take up a significant amount

of space within the jet pattern and therefore reduces the entrainment area.

No significant difference between the suckdown increment for configurations

with 3 or more jets and that for 2 jet configurations could be discerned

from the data. Therefore the expression developed for estimating the

suckdown increment for 2 jet configurations has been applied to all multi-

jet configurations.

In the initial approach to developing the Basic Method for 3 or

more jets it was assumed that all the jet flow inboard ot the line

connecting two adjacent jets (figure lb) goes into making up the fountain

core and all the air outboard goes into the arms. It was also assumed

that the arms between each adjacent pair of jets had the characteristics

of the fountain that would be developed between these two jets as a simple

2 jet configuration, and that the lift force would be half of that

calculated for this 2 jet pair. The total contribution of the several

arms would be given by summing the lift increment from the individual

pairs and would therefore be given by:

AL AL AL

ALA  A,+ --A,2 + + - A,N
A 2 2 2

T T

where 4LA,x  for each jet pair is defined in equation 9 below.

When these expressions for the arm contribution were used in studying

the core contribution (presented below) it appeared that the arm contribu-

tion was over predicted. In effect the core effects are felt outside the

line joining the jet centers (fig. lb) and the fountain arms are not as

strong as the initial assumptions would predict. In the final develop-

ment the expression for the contribution of the fountain arms is given by:

12

"L ( A tL + AL A 2 . ..AL A N 8
T T h d

e

where

21
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.8352

LA 2 x(~ (eY) (9)A, x  N e Xh y2 + (ex + h)2

yx x

The core contribution to the net induced force was extracted from

the data by using equations 8 and 9 to calculate the fountain arm contri-

bution and subtracting it and the out-of-grourd-effect and multi-jet lift

losses from the experimental data;

ALC . p= ( A ) _-L AL A

exp xpm

Samples of the data thus obtained are shown in figure 10. Because, for

most configurations, the distance between jets in the pairs making up a

multijet arrangement are not equal the data are presented as a function

of the average spacing to height parameter, ( ave"

In order to accommodate configurations with non-uniform jet spacing

it was assumed that the core contribution could be expressed as:

ALc ALc'l + ALC,2 + + ALcN (10)
T T

where Xc

ALc =TKc (e h cos x  (11)

and the constant KC and the exponent AC are to be determined from the
data such as shown in figure 10. Single values for KC and for XC for

each configuration could not be determined from the data because of the

nonlinearities seen in figure 10. However, the data can be represented

by two slopes and two constants. It was determined that a value of

AC 2.5 fit most of the configurations at low heights (higher values

of e ) ). Above a transition height, hc, some configurations
ave

showed an increase in slope and others a decrease. Unfortunately it was

difficult to determine accurate values of the slope (exponent AC)

because most of the configurations were not carried to high enough heights.

The exponent AC appears to be proportional to the number of jets, N,

22
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Figure 10.- Fountain core contribution for several sample sets of data.
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the length/width ratio of the jet pattern, E, and to be inversely

proportional to the relative size of the jet pattern -- , (fig. 11).
e

For the Basic Method the exponent XC  is defined as: e

@ h < hC XC =2.5 (12'

@ h>h C  NC NE

d
e

The corresponding values for the constants were found to be a

function of the size and shape of the planform as well as of the jet

pattern parameters (fig. 11):

-k)(E)*2
@ h < hC KC = .12N -

(13)

Note that it is not necessary to calculate the value of hC  directly.

The height, hC, is the point at which the curves intersect:

T hC

h/d
e

The net induced lift for configurations with 3 or more jets as

calculated by the Basic Method (equations I to 3, 6, and 8 to 13) are

compared with experimental data for the 11 configurations on which the

method is based in figure 20.
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h' Method

The Basic Method appears to work well for the configurations with

widely spaced jets for which it was developed. However, configurations

with closely spaced jets exhibit an abrupt increase in fountain lift at

low heights that is not predicted by the Basic Method (fig. 12).

Apparently at low heights the pressure between the jets is greater than

that predicted by the Basic Method and increases rapidly as the jet

spacing is reduced. However the ability to retain this pressure break-

down as the height increases, probably as a result of the jets beginning

to merge before reaching the ground. Under these conditions the

assumptions implicit in the Basic Method no longer apply and another

approach must be taken for closely spaced jets.

The fountain lift increment extracted from the data for configurations

with closely spaced jets was found to exhibit characteristics that can

be illustrated by the two examples configurations presented in figure 12.

The data for configuration 26 (fig. 12) is representative of most of the

data. The data at both low and high heights can be represented by an

equation of the form:

- K-- ' (14)

However, the two curves did not intersect but were joined by a straight

line transition that was tangent to the curve for the data at low
AL

heights and projected to -= 0 at a height defined as h'. The data

for configuration 25 (fig. 12) does not extend to low enough heights to

show the lower curve; only the transition tangent is present in the

available data.

The critical height, h', was found to depend on the jet spacing

and nozzle pressure ratio. For configurations with 3 or more jets,

(fig. 13);

5
.- 2 () (a (16)

e ave
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and for 2 jet configurations, (fig. 14)

_- =3.6 (17)

e

Note that the factor w is inserted to accommodate cases (such as conf.
e

10 and 12) where the jets are external to the planform. (w is equal to

half the width of the planform). For configurations in which the jets

are contained within the planform, w is taken as equal to e; e- 1.0.

The fountain lift at intermediate heights (above h') was found to be

a function of only the planform size and shape (fuselage size and shape

in the case of high wing configurations (such as conf. 26) as will be

discussed later) and to be inversely proportional to the height:

AL 03 5 W

@ h > h' A F = hde- (15)T (h/d e) (5

This expression was found to hold for 2 jet configurations as well as

for configurations with 3 or more jets.

For heights less than h' it was found that all 2 jet configurations

except those in which the jets were external to the planform (conf. 10

and 12) had the same rate of change with height; X' = -1.35. To include

those configurations with the jets external to the planform this was

modified to:

@ h < h' V1 = -1.35 2 for 2 jet configurations (18)

For configurations with 3 or more jets the exponent was found to be

inversely proportional to the size of the jet pattern as shown in

figure 13:
- 4

@ h < h' \' = -2.4 d (19)
E'5 (Sd)ave

for configurations with 3 or more jets.

The level of the fountain lift at heights below the critical height is

determined by the constant K' which was derived as shown in figures

13 and 14:
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@h<h' K' .084 ( 39L3 for 2 jet (20)

T/ \dSI) configurations

and

)3.015 9for 
conf.

K' = 4.4 (E).0 with 3 or (21)
more jets

and Nd
e + e 2 + e N e)

Estimates using the h' Method (equations 14 to 21) are compared with

experiment for 2 jet configurations in figure 19. Agreement is good for

those configurations with closely spaced jets, < 3.0 (conf. 3 to 6, 9

and 12), for which it was developed. It is unfortunate that the data for

most of these configurations does not extend to high enough heights to

determine if the predicted break in the variation of induced lift with

height is really there. The method over predicts the induced lift for
e wconfigurations with wider jet spacing (conf. 10, 3.7

edn 4.4 and conf. 1 and 2, = 6.4).

Comparisons of estimates using the h' Method with experimental data

for configurations with 3 or more jets are presented in figure 21 and in

figures 20a and b. Agreement is good for configurations with average

spacing to diameter ratios of 3.0 or less.

Other Configuration Variables

Wing Height:

The data of reference 11 show that the out-of-ground-effe2 lift loss

is reduced if the nozzle is extended below the surface. The out-of-

ground-effect lift loss for a high wing configuration would therefore

be lower than that for a similar low wing configuration. The data of

reference 11 indicate that the reduction is proportional to the square

root of the ratio of distance the nozzle projects (or wing height) to

the nozzle diameter (Fig. 15a) and the wing contribution would be

expected to decrease similarly as the wing height is increased. In the

present methods the effects of wing height on the out-of-ground-effect

lift loss is calculated by:
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bhw T [ wb (Lb] .4 ] (22)

where the lift loss for the body\T---b and for the wing-body,

are calculated by -equation-O-..

Reference 2 showed that the effect of wing height on the in-ground-

effect induced suckdown for single jet configurations could be calculated

by:

s,hw - s,b,h s,wb,h + Ah T s,b,h + Ah]

where the subscript, s indicates single jet, hw indicates high wing,

b indicates body, wb indicates wing-body (calculated as a low wing

configuration at height (h + Ah)), h indicates height above the ground

and Ah indicates wing height. The induced suckdown is calculated for

each element by equation(31using KS = 1.0 for single jet.

Simply inserting the calculated induced suckdown increments for

multijet configurations in the above expression and in the corresponding

expression for fountain lift did not prove satisfactory for high wing

multijet configurations. Apparently when the wing is not co-planer with

the bottom of the body it does not "see" the same fountain flow as a low

wing configuration and both the induced suckdown and the fountain lift

contributions are changed. As indicated by the schematic in Figure 15b

the fountain flow that impinges on the lower surface of the body is

turned outward and does not reach the wing. Under these conditions only

the body term at height, h, needs to be treated as a multijet

configuration and the induced suckdown for high wing multijet

configurations can be expressed as:

AL) (AL\ AL(
- + - S (23)

T /m, hw \T m,b,h s,wb,h+Ah s,b,h+Ah
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Figure 15.- Effects of wing height.

34

I~



NADC-80246-60

.6

4 Experimental data

5 - 0 Low wing
11 Wing off

<> High wing

--- Calculated
(h' method)

exp.

.2

0-- 
2.72

d e

0 2 4 6 8 10 12 14

h/d
e

Figure 16.- Effect of wing height on fountain lift; configuration 31, ref 14.
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When the above expression is used in extracting the fountain lift

increment from the data for configuration 31 (fig. 16) it is seen that

the fountain lift increment for the high wing configuration is essen-

tially the same as that for the fuselage alone and very much smaller

than that for the low wing configuration. The fountain lift term for

the high wing configuration is therefore simply that calculated for

the body alone:

(--) hw=( )b (24)

The above expression appears satisfactory for the configurations used

in the present study when there is a clean break between the body lower

surface and the wing; conf. 26 (fig. 21 f & g), conf. 27 (fig. 21 h, i & j)

and conf. 31 (fig. 22). The above approach would not be expected to work

for configurations with a rounded body lower surface coupled with a small

wing height or for some of the blended wing-body configurations being

developed. For these configurations it is suggested that the "equivalent
height" approach suggested by Albang, Ref. 10, might be considered.

However, this concept has not been evaluated in the present study.

Body Contour:

Most of the configurations used in developing both the Basic Method

and the h' Method have been flat plate models. If the lower surface of

the configuration is contoured the fountain lift will be reduced because

all the fountain flow will not have been stopped and turned to the

horizontal. Some of the flow will still have an upward component of

momentum as indicated in the sketch at the top of figure 17. It is well

known from Coanda turning studies that a thin sheet of air will turn

through a greater angle than a thick sheet for the same radius. Therefore

it would be expected that the relatively thin fan shaped fountain flow

from a 2 jet configuration which is aligned with the body axis would

follow the contour of the body more readily and the fountain lift will be

reduced more than the relatively thicker core-and-arm fountain or a 2 jet

fountain crosswise to the configuration.
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Figure 17.- Effect of lower surface contour.
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Three sets of data for 2 jet configurations with a fountain aligned

with the body axis show a reduction in fountain strength that is inversely

proportional to the ratio of the corner radius, r, to the jet spacing

parameter, e (fig. 17).

Only one set of data is available for a core-and-arm fountain and

there is no data available for a crosswise fountain. Until better data

is available it is recommended that the relationship shown in figure 17

be used for these types of configurations.

The fountain lift contribution produced by configurations with

contoured bodies is therefore given by:

T Kr (-i) (25)r r~lo

where Kr - 05 ( )l.0 for lengthwise fountains 1
-.20

and K. = .54 (e) for core-and-arm, or (26)r crosswise fountains (see fig. 17)

and -h is given by equations 15 - 21 for the h' method, and for

the Basic Method = + - which are given by equations

8 - 13. ro

Configuration 24 (fig. 21, a & b) is the only configuration providing

a direct comparison of flat plate and contoured models. Configurations

26 (fig. 21, f) and 27, 28, and 29 (fig. 21, h-i) also involved estimating

the effects of fuselage contour. For configuration 26 the effective

radius of the gun pods was used in determining Kr.

Lift Improvement Devices

Frequently strakes, or "Lift Improvement Devices" (LIDs), are

installed on the lower surface of the body in an attempt to increase the

fountain lift. In theory if all the fountain flow could be contained

and turned vertically downward the fountain lift could be doubled.

However, practical configurations fall short of this. Usually there

is insufficient space available for the LIDs to enclose sufficient area,

and it may be impractical to enclose the complete perimeter (or the
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rear portion may be lift open to direct the hot gasses aft in order to

minimize ingestion of hot gasses into the inlet). Also if the LIDs are

made shallow their effectiveness will suffer. Reference 7 indicated that

the fountain lift increased with strake depth up to a depth of about 0.25d

but there was little gain above that. Also reference 6 has shown that the

LIDs must be contained within the jet pattern. LIDs external to the jet

pattern can cause large lift losses rather than lift gains at low heights.

Only LID configurations internal to the jet pattern and with depths

greater than 0.25d were used in developing the present method.

In the present method the increment in fountain lift due to the

installation of LIDs is defined as:

T L T(28)

The augmentation factor for LIDs, KL, was found by subtracting the LID

off experimental data from the data with LIDs on and dividing by the

calculated fountain lift for the flat plate configuration. There is

considerable scatter in the resulting data but there is a clear indication

that KL falls off rapidly at the lower heights. At the higher heights

where the increments were very small there was even more scatter but KL

appeared to level off and an average value was used. The value of

was found to be related to the configuration geometry as shown in

figure 18 and can be expressed as:

@ h <hL KL= .22 -L- (E 2 )  S

(29)
(SL)(P,) ).44 .

h >hL = 1.25 _ T E
L q e
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PRESENTATION OF METHODS

The methods for estimating the induced lift for fan and jet V/STOL

aircraft in hovering flight are recapped in this section for the convenience

of the user. The net induced lift can be expressed as:

AL AL, AL F  ALL
T + T - + --T (1)

where;

ALo is the lift loss out of ground effect;

- . -.000253 L [ (2)

-LS  is the additional suckdown induced by ground proximity;

'L h/d - 2.2 - .24 - 1.0

TS.K S(-.015) ep(3)

where KS = 1.0 for single jec configurations; and for multijet

configurations,

K 4.5 -/ /4hde S (6)

and

\s " -1. 3613

ILF is the fountain lift which is given by the Basic Method for

widely spaced jets, and by the h' Method for closely spaced jets

( < 3.0).

Basic Method

The fountain lift is made up of 2 parts; the contribution of the

core (.L C) and the contribution of the arms (ALA) which radiate from

the core between each pair of adjacent jets.
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A L F ASL CAL

For the two jet case, there is no core and;

A F ALA .835 e 2 0 (7
T T ( S")*(e + h ly 2+ (e + h

For 3 or more jets the arm contribution is given by;

ILA -L ( AL + + AL. . +A
A_ 2_ ~ A,2 ______e

T, T .7 -(8)

where .'Ly S 835 e 2.0

xX 2 2 9T~~ ~ IN (e +x h)+))
Ix x

The core contribution is given by:

IC = AL0,1+L C,2 + +AC,"N (10)
T T

where 1 e C

AC' = TK \ ex h) Cos a ' (11)

and K C and C depend on the height:

KCC

C ~ ()35(4)65(s')5Ej18

de)

h/de 
C N

de
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h' Method

The h' Method is used for configurations with closely spaced jets

((d) < 3.0). These configurations show a sharp break in the induced
ave

lift curve which results from a discontinuity in the variation of fountain

lift with height. The fountain lift is given by:

AL F (, h '
-T-K' (de (14)

where;
.39 ii

K'=.084(i)'3 (Y- L .

for 2 jet conf.

N'=-1.35(~

where; K' =4.! 'C 3 (h- W 9£1.0whe (de L)

for 3 or more jets

/ ave

T " Transition tangent

iL_

-h- .033 )

h/d 
e

where , - Nd

2(e I + e2 + + eN)

and,

h'-3.6 ( W).6 (P2) for 2 jet configurations

h' , 2.0 (t) ( for 3 or more jets.
ave
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Body Contour

The above expressions apply to flat plate configurations. A corner

radius on the body reduces the fountain lift contribution:

( kLF = Kr (AT.F
contoured flat plate

where; Kr = .05 for lengthwise fountains

r .2

and Kr = .54 (_) for core-and-arm or crosswise

fountains (see fig. 17)

Lift Improvement Devices

Lift Improvement Devices (LIDs) increase the fountain lift:

T- =  )T j flat plate (28)

where

K- = 1.25 P' (- -
' 5

L h

h/d
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Wing Height

Raising the wing above the plane of the bottom of the body reduces

moct of the contributions to the induced lift:

Out of ground effect:

(L)b +(T)wb ( Tb]l - (22)

The additional suckdown due to the proximity to the ground is felt only

on the body for the high wing case:

(AL\ ALS\ [(AL (AL N i/fi + - I (23)

/\T)m,hw = T-m,b,h L--)s,wb,h+Ah ----- Jb,h+Ah (

The fountain lift is felt only on the body and therefore the contribution

calculated for the body alone is used:
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NEED FOR ADDITIONAL RESEARCH

The methods developed in this study are based on data from a wide range

of configurations but in most cases there was little systematic data

available. The few cases in which only one configuration parameter was
e

varied (such as the variation of j in configurations 4 to 6 from

reference 7) while the rest of the configuration was fixed were invaluable

in determining the manner in which the various ground effect contributions

varied with the key geometric parameters. In most cases an understanding

of the flow involved, intuition and trial-and-error had to be relied on in

arriving at the expressions developed. If the methods presented here are

deemed worthy of further development some carefully structured experimental

investigations would be of great help in evaluating and refining the

present methods.

Multiple Jet Suckdown:

The additional ground induced suckdown associated with multiple jet

configurations is the most important and most difficult element of the

method to determine. The fact that in the h' Method, equation (15)

for the fountain lift at the higher heights depends only on the configura-

tion size and shape (DTe )suggests that the multiple jet suckdown may be

overestimated by the present formulation and also that a simpler formulation

of the fountain lift may be possible. A systematic investigation of the

effects of varying jet spacing over a wider range of values for several

planform sizes and shapes would be of great help in reevaluating both the

multiple jet suckdown and the fountain lift. Tests should start with

simple rectangular planforms, first with 2 jet, then with equally spaced

4 jet arrangements before proceeding to more complex configurations.

Wing Height:

The method of handling wing height is based on very limited data.

Data for a systematic variation of wing height for a wider range of

configuration planforms would be desirable.

46



NADC-80246-60

Body Contour:

There is no data available for the effects of body contour with

crosswise fountains and only one set for core-and-arm fountains. In

addition the effects of body contour other than simple radii need to be

investigated and the combined effects of body contour and wing height

should be studied.

Lift Improvement Devices:

There was a large amount of scatter in the limited amount of data

available to use in developing the method to predict the effects of LIDs.

And there were only 3 configurations that had gaps in the LIDs (p' < 1.0).

Also the present method indicates that at low heights the LID effect is

inversely proportional to the squareroot of the area enclosed by the LIDs,

which is surprising. Some careful experiments to investigate these items

would be helpful.

Non Vertical Jets:

The methods assume vertical jets of equal size and thrust. The data

of reference 13 (conf. 27 to 29) indicated relatively little effect of

small inclination and the jet inclination of these configurations was

therefore ignored in developing the present methods. However, there is

one isolated set of data in reference 16 which shows a significant increase

in fountain lift with outward cant of the jets. Unfortunately the geometric

characteristics of the configuration have been lost and the data of ref. 16

could not be used in the present study. The effects of jet inclination

should be investigated systematically.

Thrust Differential:

The aft jets on configuration 22 to 24 were smaller, operated to

higher pressure ratios, and produced less thrust than the front jets.

The fountain lift contribution of these configurations were calculated

using the appropriate thrust of each jet pair and by positioning the

fountains in inverse ratio to the thrusts. Unfortunately when the thrusts

are unequal the fountains will not be vertical, as is assumed in the Basic

Method. The agreement shown for these configurations may therefore be
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fortuitous or the method may have been biased by the inclusion of these

data in the derivation. Specific experiments to investigate the effects

of dissimilar jets size and thrust in a systematic manner are needed.

Non Circular Jets:

Kotansky and Glaze in reference 17 have shown that, with rectangular

jets the wall jets on the ground are very nonradial. The wall jets from

the sides tend to be two-dimensional and contain much more of the mass

flow than the more nearly radial flow from the ends. Under these condi-

tions both the suckdown and the fountain strengths would be altered.

Vogler's data in reference 14 shows that the ground induced suckdown

reduces as the length width ratio of the rectangular jet increases. Also

the fountain strength would be expected to be reduced if rectangular jets

are placed end to end, and increased if placed side by side. Two or more

closely spaced circular jets would produce flow fields si. ilar to

rectangular jets and therefore similar induced lift effects. The data from

configurations 24 and 31 may contain these effectsand the h' Metlod

developed here may have been biased by including them in its development.

A systematic investigation of rectangular jets is currently underway and

should help to quantify these effects.

Height Range:

Some of the data did not go to high enough heights (configurations 3

to 9 and 14 to 19 for example) and some did not go low enough (conf. 26)

and some did not take enough points (conf. 31) to adequately define

critical breaks in the variation of induced lift with height. The

present method should be used to estimate the various lift loss and lift

gain increments for each configuration to be investigated before testing

to ensure that data is taken in all the critical height ranges.

Nozzle Pressure Ratio:

The critical height h' was found to be dependent on pressure ratio

and previous work (ref. 2) has shown a small effect of pressure ratio on

the suckdown for the single jet case. No other effects of pressure ratio

were apparent in the data used in developing the present methods.

48



NADC-80246-60

However, except for ref. 11 which showed the dependence of h' on

pressure ratio, there have been no systematic investigations of pressure

ratio on fountain lift and multiple jet suckdown. The pressure ratios

used in the investigations which form the basis of the present methods

ranged from 1.15 to over 2.0 and it is possible that the effects of

pressure ratio are obscured by other effects. An investigation of the

effects of pressure ratio on fountain lift and multiple jet suckdown

is needed.
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CONCLUDING REMARKS

The present study has shown that, with the empirical approach used

here, two different methods are needed to predict the induced lift of

Fan and Jet V/STOL aircraft in hovering flight. The Basic Method as

developed here applies to configurations with widely spaced jets (e > 3.0),

and the h' Method is applicable to closely spaced jets. The methods

account for the effects of jet arrangement, configuration planform, wing

height, body contour and Lift Improvement Devices (LIDs) but are limited

to essentially vertical, circular jets of equal size and thrust.

The methods are based on correlation of data from a wide variety of

configurations, however, there was little systematic variation in any of

the data sets available. Suggestions for further work to evaluate and

refine the methods are included.
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TABLE I
GEOMETRY OF TWO JET CONFIGURATIONS

Conf. d d w S WY S
e p A d L WL d d S. e

cm e e
cm

1 3.59 5.08 2.0 40.7 4.53 .096 1.0 4.5 .853 1.0 1.0 1.0

2 127 10.18 .301 4.5 2.75

3 165 12.55 .622 2.34 4.63

5 1.061
6 + 1 1 1 + .850

7 3.59 5.08 2.0 115 8.25 1.0 .27 4.5 9.13 .447

8 ~,~ , 77.5 6.25 1.0 .182 4.5 9.13 .27

9 2.54 3.63 1.15 5.09 1.704 .125 1.0 2.0 2.83 .25 .25

10 5.9 8.34 1.5 37.9 5.33 .64 .396 2.63 2.92 1.19 .662 1.0

11 , 3.09 2.37 1.46 .765

(12) 4.83 6.82 1.15 6.66 2.011 .447 .376 1.05 - 1.0 .546 .355
Body
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TABLE II
GEOMETRY OF CONFIGURATIONS WITH THREE OR MORE JETS

Cont.-- 

p
.1 d P s D V Lel c A de L de d c e sccm c C

13 3.35 t.70 2.0 63.0 7.89 .915 1.0 3.85 1.0 - -

1.. 3..1 7.21 54.8 7.32 .915 3.58 .707 1.0

4.09 8.18 80.2 8.9 .64 4.36 - .737

16 + 29.5 4.67 .234 .798 -

1- 3 3.35 6.70 70 8.03 .85 .50 3.15 1.0 - .728

Is 46.7 6.3-2 884 - I
19 10.4 3.10 728 -

5.08 8.88 1.4 119 9.14 1.0 .48 3.19 1.0 - - -

< .-- .25 7.11 .64 .396 2.56 1.0 1.16 .9

-" - 3.48 1.0 - - -- 4b I
3 ,3.77 1.0 - - -

24 3 5.9 10.22 1.5 12.6 91 .85 .259 1.83 1.0 .101 .54 .9

23, 4 2.87 5.73 2.08 39 9 525 .31 1.23 1.0 - - -

25 I 9 -

25 34.5 3.4-1 .463

26 6.15 13.5 2 3.5 2.075 .175 .502 2.08 .95 .16 .80 .71
Body. 7.33 1.80

27 4.64 9.28 2.0 31.6 4.39 .138 .784 .923 1.0 1.3 - -

8 6 3.79 1.07,1.0

29 3.28 1.13 1.8

54
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30 3 3. 10 2 . .5 193 .1 .0 18
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TABLE II- Concluced
GEOMETRY OF CONFIGURATIONS WITH THREE OR MORE JETS

Con f d1 12  2~ ( L -S d y
e e i L 2 deg deg 2

13 2.08 1.77 1.60 1.60 1.60 1.60 49.5 40.5 1.0 1.0 1.18

14 1.94 1.66 1.48 1.48 1.48 1.48 1.17

15 3.26 1.46 1.72 1.71 1.72 1.72 65.9 24.1 , 2.23

16 1 1 0 1.71 0 1.71 1- 2.23

17 2.63 2.06 1.84 1.84 1.84 1.84 67 46 1.0 1.28

18 0 o - .o -

19 0 0 -- -

20 2.96 1.80 2.02 5.1 3.66 5.66 72.5 35 .71 .79 1.64

21 3.54 .936 4.03 .898 4.03 .898 80.8 18.5 .518 1.0 3.78
22 See Table II 4.0622I I - --. 4.06

23 See Table 11 4.77
24 1.86 .939 0 .813 1.01 .813 75.5 29 - .64 1.98

25 1.0 .377 1.43 4.76 2.0 4.76 69.4 20.6 .71 1.0 2.65
a

25b 
. 21 4 725 1.21 4.76 1.79 4.,6 .68 1.0

26 0. 1_____ See Table III - 2.27
Body

27 .425 .50 .543 4.7 5.43 4.7 40.4 49.6 1.0 1.0 .85

28 .347 .409 .634 .634 I1.77
29 .301 .354 .689 , .689 1 1 2.55

29.b 477 .566 .566 32.3 57.7 I 1.89

29c  .601 .442 .442 26.6 63.4 1.5

30 1.86 .939 0 0 0 0 75.5 29 - - 1.98
31 1.071 .386 2.05 3.73 3.32 3.73 70.2 19.8 .62 1.0 2.78

31 .4 .4 1.0 2.78

Body
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TABLE III
JET PATTERN GEOMETRY FOR CONFIGURATIONS WITH

UNEQUAL FRONT AND REAR JET SPACING

(1)

0 0
(4) (2)

0 0

(1)

e y Y S'

d d v deg S"
e e

Side (1) 3.507 4.62 1.0 75.4 .408

Conf. 22 Rear (2) .936 .898 18.5 1.0

Front (4) .792 6.09 10.7 .752

Side (1) 4.117 4.62 77.5 .424

Conf. 23 Rear (2) .936 .898 15.9 1.0

Front (4) .792 5.32 9.1 .695

Side (1) 2.13 0 46.5 -

Conf. 26 Rear (2) .82 -2. 39 1.0

Front (4) 1.06 -2. 48 1.0
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e= 6.36 0 0d

.i

0 -_ _ , -  . . .

-/ Net ground effect

* -.3 (, Basic method e > 3.0

IL Suckdown increment
T

Equivalent single jet

Multi jet

-. 7

-. 8 . I I I I I I
0 2 4 6 8 10 12 14

h/d
e

(a) Configuration I (ref 6)

Figure 19.- Comparison of calculated and measured ground effects
for 2 jet. configurations.
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h' method e < 3.0
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-. 6
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(b) Configuration 2 (ref 6)

Figure 19 .- Continued
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(c) Configuration 3 (ref 4)

Figure 19.- Continued.
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(d) Configuration 4 (ref 7)

Figure 19.- Continued
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(e) Configuration 5 (ref 7)

Figure 19.- Continued.
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(f) Configuration 6 (ref 7)

Figure 19.- Continued
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(g) Configuration 7 (ref 6)

Figure 19.- Continued
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(h) Configuration 8 (ref 6)

Figure 19.- Continued.
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-.1 Net ground effect
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h' method e < 3.0
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-.5

-.6

-.7
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(i) Configuration 9 (ref 7)

Figure 19.- Continued.
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(j) Configuration 10 (ref 8)

Figure 19.- Continued
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(k) Configuratioa 11 (ref 8)

Figure 19.- Continued.
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(1) Configuration 12 (ref 7)

Figure 19.- Concluded.
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-. 6

II
-.8 I 1II _
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(a) Configuration 13 (ref 4)

Figure 20.- Comparison of calculated and measured ground effects
for 3 and 4 jet configurations. Wide jet spacing; (e) >3.0.
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(b) Configuration 14 (ref 6).

Figure 20.- Continued.
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(c) Configuration 15 (ref 6).

Figure 20.- Continued.
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(d) Configuration 16 (ref 6)

Figure 20.- Continued.
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(e) Configuration 17 (ref 6).

Figure 20.- Continued.
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(g) Configuration 19 (ref 6).

Figure 20.- Continued.
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(h) Configuration 20 (ref 10).

Figure 20.- Continued.
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(i) Configuration 21 (ref 8).

Figure 20.- Continued.
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-. 8 _____________________ 
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(j) Configuration 22 (ref 8).

Figure 20.- Continued.
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(k) Configuration 23 (ref 8).

Figure 20.- Concluded.
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(a) Configuration 24 (ref 8).

Figure 21.- Comparison of calculated and measured ground effects
for configurations with 3 or more jets. Close jet spacing
e < 3.0.
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(b) Confi.guration 24 (ref 8).

Figure 21.- Continued.

$ 81



NADC-80246-60

.2 =1.38
ave

.1

0

Net ground effect

hi method e < 3.0
-.2 d

Suckdown increment

-.L Equivalent single jet

-T /1 >uiri jet

-.5 I

-. 6

-. 7

-. 8 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 2 4 6 8 10 12 14

hid

(c) Configuratimn 25a (ref 11).

Figure 21.- Continued.
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(d) Configuration 25b (ref 11)

Figure 21.- Continued.
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(e) Configuration 25c (ref li).

Figure 21.- Continued.
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Figure 21 continued.
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Figure 21.- Continued.
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(h) Configuration 27 (ref 13)

Figure 21.- Continued.
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(J) Configuration 29 (ref 13).
Figure 21.- Continued.
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(k) Configuration 30 (ref 8).

Figure 21.- Concluded.
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(a) Low wing.

Figure 22.- Effect of wing height on induced lift; Configuration 31, ref 14.
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(b) Body alone.

Figure 22.- Continued.
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Figure 22.- Concluded.
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U.S. Army Aviation Systems Command, St. Louis, MO. .. ........... 1
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Georgia Inst., of Technology, Atlanta, GA (Attn: Dr. H. McMahon) . . . . .
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